

EMC TEST REPORT

FULL COMPLIANCE

Report Number: 102442722DEN-001 Project Number: G102442722

Report Issue Date: January 21, 2016

Model Tested: LulzBot TAZ 6

Standards: FCC 47CFR 15B

ICES-003 Issue 5 (2012-11) CISPR 22: Ed 6 (2008-29) EN 55022: Ed 6 (2010-12) CISPR 24: Ed 2 (2015-04) EN 55024: Ed 2 (2010-11) CISPR 32: Ed 2 (2015-03) EN 55032: Ed 1 (2012-10) AS/NZS CISPR22(2010-12) AS/NZS CISPR24 (2013-06) AS/NZS CISPR32 (2013)

Tested by:
Intertek Testing Services, NA Inc.
1795 Dogwood St. Suite 200
Louisville, CO 80027
USA

Client: Aleph Objects Inc. 626 W 66th St Loveland, CO 80538 USA

Report prepared by Reviewer

Report reviewed by

Son La / Project Engineer

Michael Spataro/EMC Team Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Model: LulzBot TAZ 6 Page 1 of 60

Intertek

Report Number: 102442722DEN-001 Issued: 01/21/2016

Table of Contents

1	Introduction and Conclusion	3
2	Test Summary	
3	Client Information	4
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	<i>(</i>
6	Radiated Emissions	8
7	AC Mains Conducted Emissions	16
8	Harmonics	2
9	Flicker	31
10	Electrostatic Discharge Immunity Test	3
11	Radiated, radio-frequency, electromagnetic field immunity test test	41
12	Electrical Fast Transient/Burst Immunity Test	44
13	Immunity to Surge	47
14	Conducted, radio-frequency, electromagnetic field immunity test	50
15	Voltage Dips / Interruptions Immunity Tests	53
16	Power Frequency Magnetic Field Immunity Test	50
17	Revision History	60

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
6	Radiated Emissions (CISPR 22: 2008-09-24 Ed:6; FCC CFR47 part 15 subpart B)	Pass
7	AC Mains Conducted Emissions (CISPR 22: 2011/11/23 Ed:5.2; FCC CFR47 part 15 subpart B)	Pass
8	Harmonics (IEC 61000-3-2: Ed 4.0 2014)	Pass
9	Flicker (IEC 61000-3-3: Ed 3.0 2013)	Pass
10	Electro-Static Discharge Immunity Test (IEC 61000-4-2: Ed.20 2008)	Pass
11	Radiated, Radio-Frequency, Electromagnetic Immunity (IEC 61000-4-3: Ed. 3.2 2010)	Pass
12	Electrical Fast Transient/Burst Immunity Test (IEC 61000-4-4: Ed 3.0 2012)	Pass
13	Immunity to Surges (IEC 61000-4-5: Ed 3.0 2014)	Pass
14	Conducted, Radio-Frequency, Electromagnetic Immunity Test (IEC 61000-4-6: 2013 (COR1 2015))	Pass
15	Voltage Dips/Interruptions Immunity Test (IEC 61000-4-11: Ed 2.0 2004)	Pass
16	Power Frequency Magnetic Field Immunity Test (IEC 61000-4-8: Ed 2.02009)	Pass

Model LulzBot TAZ 6 Page 3 of 60

3 Client Information

This EUT was tested at the request of:

Client: Aleph Objects Inc.

626 W 66th St Loveland, CO 80538

USA

Contact: Eric Kuzmenko **Telephone:** (970) 377-1111

Fax: NA

Email: kuzmenko@alephobjects.com

4 Description of Equipment Under Test and Variant Models

Manufacturer: Aleph Objects Inc.

626 W 66th St Loveland, CO 80538

USA

Equipment Under Test			
Description Manufacturer Model Number Serial Number			
LulzBot TAZ 6 Desktop FFF 3D Printer	Aleph Objects Inc.	LulzBot TAZ 6	KT-PR0041NA-00001

Receive Date:	01/19/2016
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

3D printer, extrudes filament from a nozzle and moves gantry to form 3D object. Can print via SD card or via USB connection.

Equipment Under Test Power Configuration				
Rated Voltage Rated Current Rated Frequency Number of Phases				
100 - 240	7.0 A	50/60	1	

Operating modes of the EUT:

	- ug u.u - u.u - u
No.	Descriptions of EUT Exercising
1	Mode 1: Printing 3D object via SD card.

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Aleph Objects Cura LulzBot Edition

Model LulzBot TAZ 6 Page 4 of 60

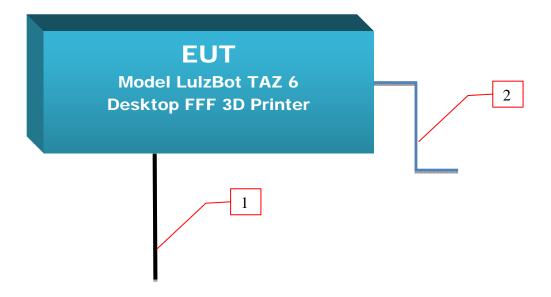
Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

NA

Model LulzBot TAZ 6 Page 5 of 60

5 System Setup and Method


	Cables				
ID	Description	Length (m)	Shielding	Ferrites	Termination
1	Power Cord	1.83	No	No	
2	USB Cable	1.83	Yes	Yes	

Support Equipment				
Description Manufacturer Model Number			Serial Number	
None				

5.1 Method:

Configuration as required by ANSI C63.4 and CISPR 16. Unless otherwise stated no deviations were made from FCC 15.109, ICES-003, CISPR22, CISPR24, CISPR32

5.2 EUT Block Diagram:

Model LulzBot TAZ 6 Page 6 of 60

5.3 EUT Performance Criteria and Monitoring:

Performance as required by ANSI C63.4 and CISPR 16. Unless otherwise stated no deviations were made from CISPR24.

Product Specific Performance:

No.	Description
1	CISPR24 Table 1 and Table 4: Performance criterion "A": 61000-4-3, 61000-4-6, 61000-4-8,
2	CISPR24 Table 1 and Table 4: Performance criterion "B": 61000-4-2, 61000-4-4, 61000-4-5, 61000-4-6
3	CISPR24 Table 4:: Performance criterion "C": 61000-4-11
4	No interruption of printing, temperatures are stable, all components are functional.

Description of how performance was observed during testing:

No.	Description
1	Mode 1: Examine the machines operation and ensure motion/extrusion is occurring as expected.

General notes: None

Model LulzBot TAZ 6 Page 7 of 60

6 Radiated Emissions

6.1 Method

Tests are performed in accordance with CISPR 22.

TEST SITE: 3m SAC

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 3m	30-200MHz HP	3.6 dB	6.3 dB
Radiated Emissions, 3m	30-200MHz VP	4.5 dB	6.3 dB
Radiated Emissions, 3m	200-1000MHz HP	3.7 dB	6.3 dB
Radiated Emissions, 3m	200-1000MHz VP	3.7 dB	6.3 dB
Radiated Emissions, 3m	1-26 GHz	5.4 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Model LulzBot TAZ 6 Page 8 of 60

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $_{\mu}$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $_{\mu}$ V/m. This value in dB $_{\mu}$ V/m was converted to its corresponding level in $_{\mu}$ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dBAG = 29.0 dB

 $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in $dB\mu$ V

Example:

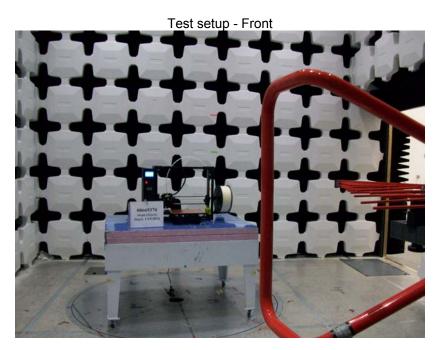
FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF =
$$10^{(32\,dB_{\mu}V\,/\,20)}$$
 = 39.8 μ V/m

Model LulzBot TAZ 6 Page 9 of 60

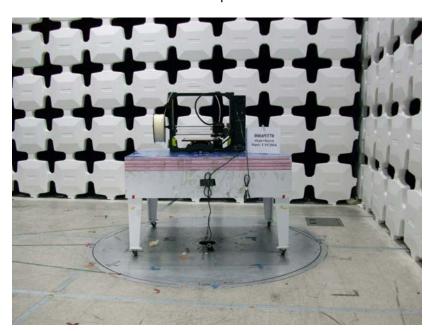
6.2 Test Equipment Used:

<u>Asset</u>	<u>Description</u>	<u>Manufacturer</u>	<u>Model</u>	<u>Serial</u>	Cal Date	Cal Due
18912	9 kHz- 1.3GHz Pre Amp	Hewlett-Packard	HP	5	5/19/2015	5/19/2016
19937	Bilog Antenna 30MHz - 6GHz	Sunol Sciences	JB6	A050707-2	4/10/2015	4/10/2016
DEN-073	EMI Receiver (10Hz – 26.5GHz)	RHODE & SCHWARZ	ESU 26	100265	12/19/2015	12/19/2016
CC1-E2	Radiated Cable	Teledyne	90-206-300; PN:F-130- S1S1-100; 90-206-072;	E2-A; 5026702 002; E2-C; E2-D	11/17/2015	11/17/2016
LAB-012	Wireless BP, Tem and Humidity sensor	Omega	zED-BTH	0070368	9/01/2015	9/1/2016

Software Utilized:

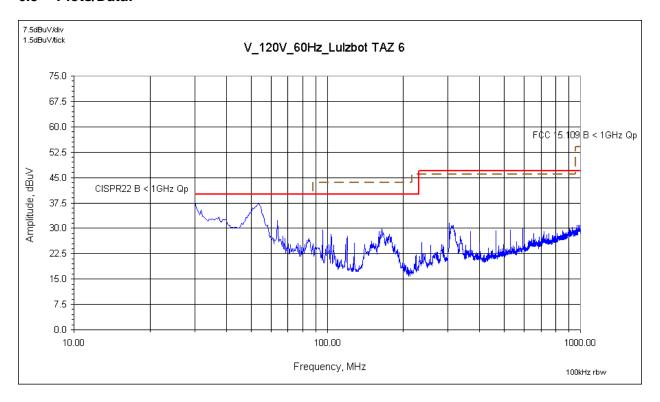

Name	Manufacturer	Version
SW-6: Software for Radiated and Conducted emissions.	Intertek	OATS cvi, V.1.0

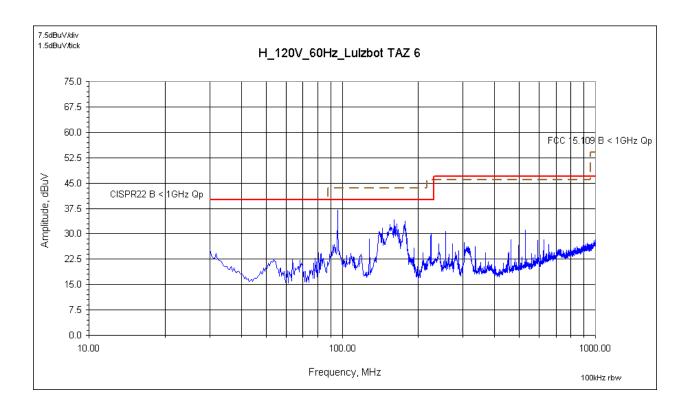
6.3 Results:


The sample tested was found to Comply.

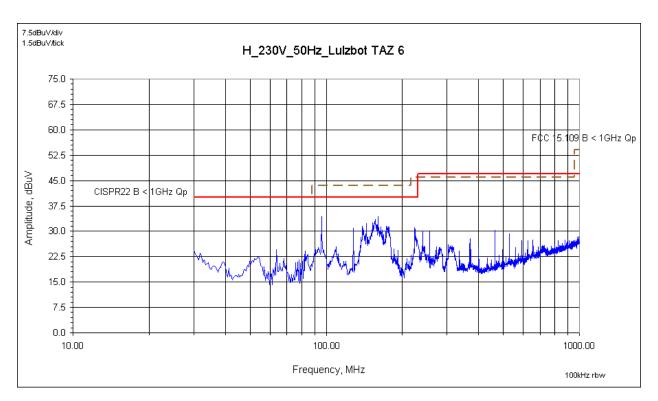
Model LulzBot TAZ 6 Page 10 of 60

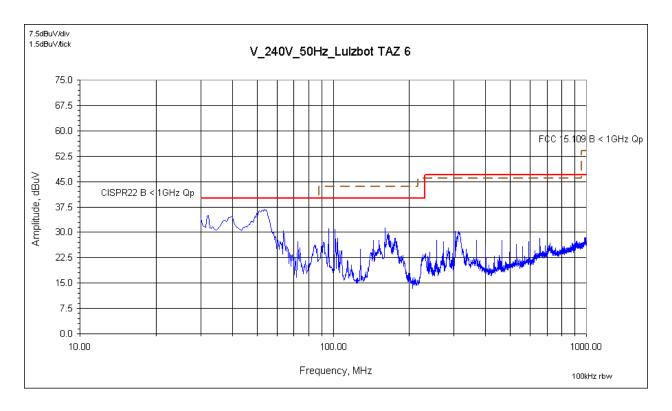
6.4 Setup Photographs:

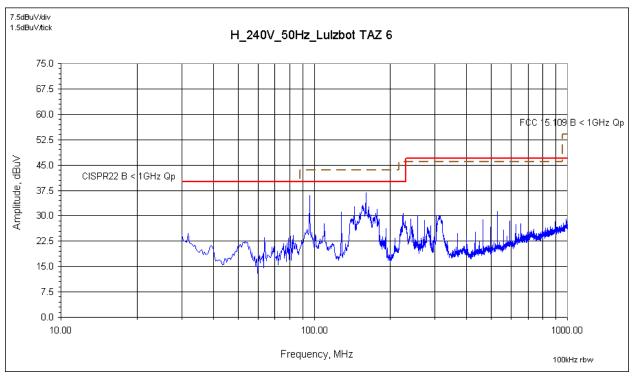



Test setup - Rear

Model LulzBot TAZ 6 Page 11 of 60


6.5 Plots/Data:




Model LulzBot TAZ 6 Page 12 of 60

Model LulzBot TAZ 6 Page 13 of 60

Model LulzBot TAZ 6 Page 14 of 60

Intertek

Report Number: 102442722DEN-001 Issued: 01/21/2016

EDEO													
FREQ	LEVEL	DET	CABLE	ANT	PREAMP	ATTEN	FINAL	POL	HT	AZ	DELTA1	DELTA2	RBW
		Qp									CISPR22	FCC	i
		Av									B < 1GHz	15.109 B < 1GHz Qp	n
		Pk									Qp	1GHZ QP	n
MHz	dBuV	Rms	+ [dB]	+ [dB/m]	- [dB]	+ [dB]	= [dBuV]	(V/H)	(m)	(DEG)			(MHz)
V 120V	_60Hz_Lulz	bot TAZ 6											
30.43	39.05	Qp	0.48	20.80	28.04	0.00	32.29	V	1.00	146.0	NA	- 7.71	0.120
54.66	52.88	Qp	0.66	7.70	27.97	0.00	33.26	V	1.00	264.0	NA	- 6.74	0.120
63.75	43.72	Qp	0.72	7.97	27.95	0.00	24.47	V	1.00	0.0	NA	- 15.53	0.120
95.77	33.15	Qp	0.88	9.55	27.82	0.00	15.76	V	1.00	166.0	NA	- 27.76	0.120
165.43	39.42	Qp	1.16	12.36	27.47	0.00	25.46	V	2.67	148.0	NA	- 18.06	0.120
303.99	44.06	Qp	1.57	13.68	26.96	0.00	32.34	V	1.50	142.0	NA	- 13.68	0.120
000.00	11.00	αр	1.01	10.00	20.00	0.00	02.01	•	1.00	112.0	1471	10.00	0.120
H 120V	60Hz Lulz	hot TAZ 6											
96.00	_00112_E012 51.87	Qp	0.88	9.60	27.82	0.00	34.53	Н	1.80	220.0	NA	- 8.99	0.120
159.99	48.09	Qp	1.13	12.80	27.50	0.00	34.52	Н.	1.50	120.0	NA	- 9.01	0.120
177.55	41.47	Qp	1.19	11.50	27.40	0.00	26.77	Н.	1.23	220.0	NA	- 16.76	0.120
223.99	44.74	Qp	1.34	10.96	27.11	0.00	29.93	Н	1.10	240.0	NA	- 16.09	0.120
255.99	45.96	Qp	1.42	11.66	26.97	0.00	32.07	Н	1.00	300.0	NA	- 13.95	0.120
527.98	38.07	Qp	2.06	18.44	28.23	0.00	30.34	Н	1.40	0.0	NA	- 15.68	0.120
027.00	00.07	αр	2.00	10.77	20.20	0.00	00.04	- ''	1.40	0.0	14/1	10.00	0.120
V 230V	50Hz_Lulz	zhot TAZ 6											
30.00	_50112_E012 35.70	Qp	0.48	21.10	28.04	0.00	29.24	V	1.40	0.0	- 10.76	- 10.76	0.120
31.73	34.16	Qp	0.40	20.11	28.04	0.00	26.73	V	1.40	240.0	- 13.27	- 13.27	0.120
52.07	53.06	Qp	0.64	7.99	27.98	0.00	33.71	V	1.00	95.0	- 6.29	- 6.29	0.120
96.00	45.63		0.88	9.60	27.82	0.00	28.29	V	3.30	0.0	- 11.71	- 15.23	0.120
159.99	40.67	Qp	1.13	12.80	27.50	0.00	27.10	V	3.30	0.0	- 12.90	- 16.43	0.120
316.27	33.71	Qp	1.59	13.83	27.02	0.00	22.10	V	3.30	0.0	- 24.90	- 23.92	0.120
310.27	33.71	Qp	1.09	13.03	21.02	0.00	22.10	V	3.30	0.0	- 24.90	- 23.92	0.120
H 330V/	50Hz Lulz	zhot TAZ6											
96.00	_53.94		0.88	9.60	27.82	0.00	36.60	Н	1.80	280.0	- 3.40	- 6.92	0.120
128.22	27.47	Qp	1.02	13.58	27.69	0.00	14.38	Н	1.60	250.0	- 25.62	- 29.15	0.120
159.81	38.11	Qp	1.13	12.80	27.51	0.00	24.53	H	1.00	200.0	- 15.47	- 18.99	0.120
223.99		Qp	1.13										0.120
463.98	44.20 38.49	Qp	1.93	10.96 16.80	27.11 28.04	0.00	29.39 29.18	H	1.00 1.97	200.0 250.0	- 10.61 - 17.82	- 16.63 - 16.84	0.120
527.98	35.85	Qp On	2.06	18.44	28.23	0.00	28.12	H	1.30	250.0	- 17.62	- 10.64	0.120
321.80	JJ.03	Qp	2.00	10.44	20.23	0.00	20.12	17	1.30	∠50.0	- 10.00	- 17.90	0.120
1/ 2401/	50Hz Lulz	zhot TAZE											
30.00	_50HZ_Ediz		0.48	21.10	28.04	0.00	29.36	V	1.00	1.0	- 10.64	- 10.64	0.120
32.16	34.65	Qp On	0.46	19.87	28.04	0.00	26.98	V	1.00	90.0	- 10.64	- 10.64	0.120
39.95	42.62	Qp Qp	0.56	13.83	28.02	0.00	29.00	V	1.00	50.0	- 13.02	- 13.02	0.120
54.66	51.75		0.66	7.70	27.97	0.00	32.13	V	1.10	300.0	- 7.87	- 7.87	0.120
101.83	34.48	Qp On	0.66	10.87	27.80	0.00	18.44	V	1.10	0.0	- 7.87 - 21.56	- 7.87 - 25.08	0.120
159.81	33.27	Qp On	1.13	12.80	27.51	0.00	19.69	V	1.00	175.0	- 20.31	- 23.83	0.120
109.01	33.27	Qp	1.13	12.00	16.12	0.00	19.09	V	1.00	1/5.0	- 20.31	- 23.03	0.120
H 240\/	50Hz Lulz	zhot TAZE											
96.00	_50HZ_Luiz 55.73		0.88	9.60	27.82	0.00	38.39	Н	1.80	0.0	- 1.61	- 5.13	0.120
127.99	43.07	Qp	1.02	13.60	27.69	0.00	30.00	H	1.80	180.0	- 1.61	- 5.13 - 13.52	0.120
159.99	48.15	Qp	1.02	12.80	27.59	0.00	34.58		1.80	0.0	- 10.00	- 13.52 - 8.95	0.120
		Qp						H					
224.28	39.27	Qp	1.35	10.97	27.11	0.00	24.48	Н	1.20	277.0	- 15.52	- 21.55	0.120
315.50	44.19	Qp	1.58	13.81	27.02	0.00	32.57	H	1.00	71.0	- 14.43	- 13.46	0.120
527.98	38.53	Qp	2.06	18.44	28.23	0.00	30.80	Н	1.30	180.0	- 16.20	- 15.22	0.120

Test Personnel: Son La Test Date: 1/19/2016 Supervising/Reviewing Engineer: (Where Applicable)
Product Standard:

| Doubt Voltage: | 120V 60Hz | 230V 240V 50hz | Limit Applied: Class B Input Voltage: 120V, 60Hz, 230V, 240V, 50hz Pretest Verification w/ Ambient Temperature: 22.2 °C Ambient Signals or Relative Humidity: 16.4 % BB Source: EMCO site source Atmospheric Pressure: 836.8 mbars

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 15 of 60

7 AC Mains Conducted Emissions

7.1 Method

Tests are performed in accordance with CISPR 22.

TEST SITE: 3m SAC

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted Emissions	150 kHz - 30 MHz	3.3 dB	3.4dB

As shown in the table above our conducted emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Model LulzBot TAZ 6 Page 16 of 60

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF

Where NF = Net Reading in dBμV

RF = Reading from receiver in dBμV

LF = LISN or ISN Correction Factor in

LF = LISN or ISN Correction Factor in dB

CF = Cable Correction Factor in dB AF = Attenuator Loss Factor in dB

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu V$$
 UF = $10^{(49.1 \ dB_{\mu}V \ / \ 20)} = 285.1 \ \mu V/m$

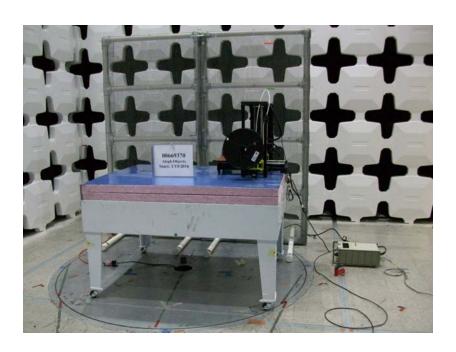
Model LulzBot TAZ 6 Page 17 of 60

7.2 Test Equipment Used:

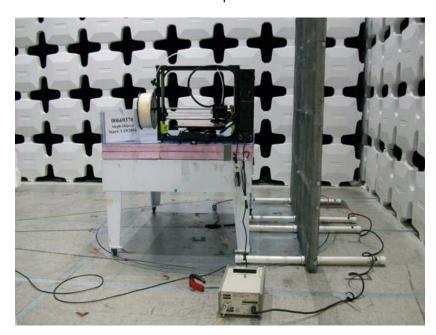
Asset	Description	<u>Manufacturer</u>	<u>Model</u>	<u>Serial</u>	Cal Date	Cal Due
18914	Single Phase LISN	EMCO	3816/NM	9408-1003	04/13/2015	04/13/2016
18730	Transient Limiter	Hewlett-Packard	11947A	2820A00277	06/24/2015	06/24/2016
DEN-073	EMI Receiver (10Hz – 26.5GHz)	RHODE & SCHWARZ	ESU 26	100265	12/19/2015	12/19/2016
CC1-001A	50 Ohm Cable	Pasternak Enterprise	RG-223/U	N/A	05/27/15	05/27/16
CC1-001B	50 Ohm Cable	Pasternak Enterprise	RG-223/U	N/A	05/27/15	05/27/16
LAB-012	Wireless BP, Tem and Humidity sensor	Omega	zED-BTH	0070368	9/01/2015	9/1/2016

Software Utilized:

Name	Manufacturer	Version
SW-6: Software for Radiated and Conducted emissions.	Intertek	OATS cvi, V.1.0

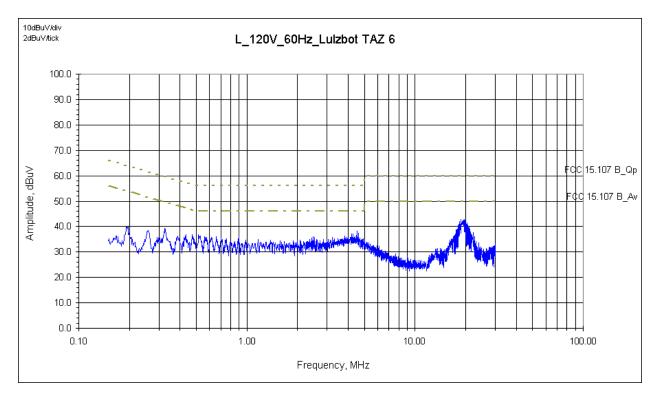

7.3 Results:

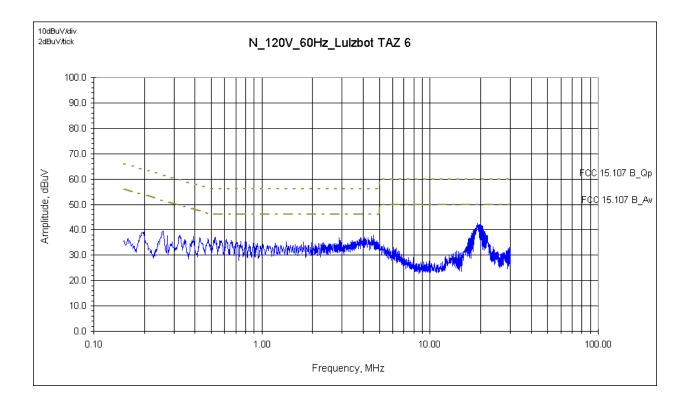
The sample tested was found to Comply.

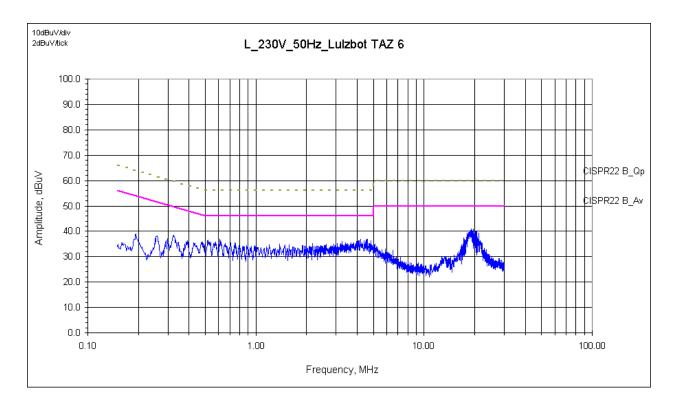

Model LulzBot TAZ 6 Page 18 of 60

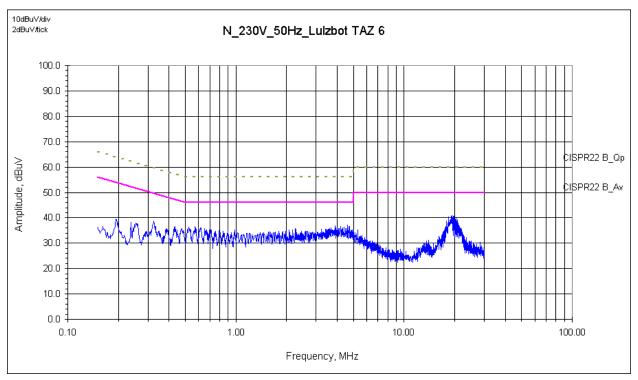
7.4 Setup Photographs:

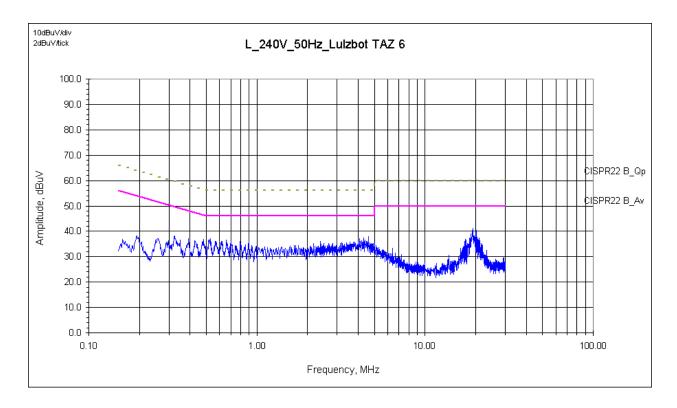
Test setup – Front

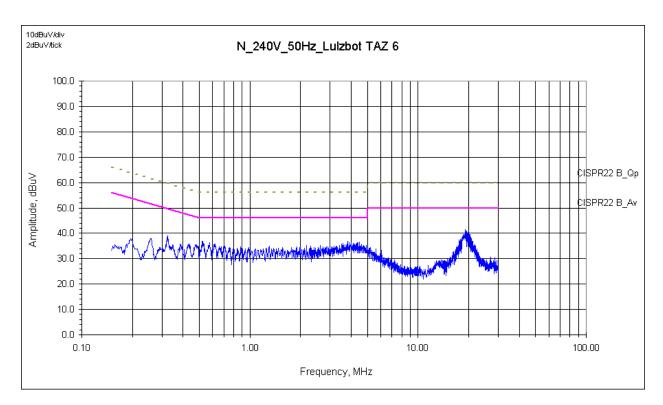



Test setup – Side


Model LulzBot TAZ 6 Page 19 of 60


7.5 Plots/Data:




Model LulzBot TAZ 6 Page 20 of 60

Model LulzBot TAZ 6 Page 21 of 60

Model LulzBot TAZ 6 Page 22 of 60

Intertek

Report Number: 102442722DEN-001 Issued: 01/21/2016

Mitz	FREQ	LEVEL	DET	CABLE	LISN	PREAMP	ATTEN	FINAL	TF	ST PO	NT	DELTA1	DELTA2	RBW
Mart				O, BLL	LIGIT	1 1 () ()	7111211	11172				BELIM	<i>BEE17</i> E	NBW.
L_230V_50Hz_Lulzbot TAZ6 0.26			-									CISPR22	CISPR22	
0.26	MHz	<u>dBuV</u>	Pk	+ [dB]	+ [dB/m]	- [dB]	+ [dB]	= [dBuV]	N -	L1 - L2	- L3	B_Av	B_Qp	(MHz)
0.26														
1.026					0.00	0.00	0.05	24.07		Linad		NIA	07.40	0.000
1.662 20.944 Qp														
4.61														
13.78 4.21 Qp														
20.58 26.21 Qp			_											
1.026 20.72 Av														
0.26														
4.61		20.72	Av	0.12	0.08	0.00	9.95					- 20.59	NA	
13.78	0.62	15.95	Av	0.14	0.06	0.00	9.95	26.09		Line 1		- 19.91	NA	0.009
N_230V_50Hz_Lulzbot TAZ6	4.61	14.85	Av		0.18	0.00	9.97	25.33		Line 1		- 20.67	NA	0.009
N_230V_50Hz_LulzbotTAZ6			Av			0.00				Line 1		- 29.99		
0.33 21.72 Qp	20.58	21.86	Av	0.74	1.34	0.00	10.03	33.98		Line 1		- 16.02	NA	0.009
0.33 21.72 Qp	N 230	V 50Hz	Lulzbot T/	AZ 6										
0.84 19.69 Qp 0.15 0.08 0.00 9.95 29.86 Line 2 NA -26.14 0.009 2.17 15.04 Qp 0.22 0.10 0.00 9.95 25.31 Line 2 NA -26.66 0.009 3.91 19.02 Qp 0.30 0.16 0.00 9.96 29.44 Line 2 NA -26.66 0.009 13.04 9.95 Qp 0.72 1.26 0.00 10.03 36.29 Line 2 NA -28.69 0.009 19.81 24.27 Qp 0.72 1.26 0.00 10.03 36.29 Line 2 NA -23.71 0.009 0.33 17.76 Av 0.15 0.08 0.00 9.95 24.44 Line 2 -21.64 NA 0.009 1.44 Av 0.03 0.16 0.00 9.95 20.70 Line 2 -21.64 NA 0.009 1.304 5.00					0.07	0.00	9.95	31.86		Line 2		NA	- 27.68	0.009
2.17										Line 2				0.009
13.04 9.95 Qp 0.57 0.79 0.00 10.00 21.31 Line 2 NA -38.69 0.009 19.81 24.27 Qp 0.72 1.26 0.00 10.03 36.29 Line 2 NA -23.71 0.009 0.33 17.76 AV 0.12 0.07 0.00 9.95 27.90 Line 2 -21.64 NA 0.009 0.84 14.27 AV 0.15 0.08 0.00 9.95 24.44 Line 2 -21.56 NA 0.009 0.84 14.27 AV 0.15 0.08 0.00 9.95 24.44 Line 2 -21.56 NA 0.009 0.14 0.009 0.16 0.00 0.95 24.44 Line 2 -25.30 NA 0.009 13.04 5.00 AV 0.57 0.79 0.00 10.00 16.36 Line 2 -21.11 NA 0.009 19.81 19.09 AV 0.72 1.26 0.00 10.03 31.11 Line 2 -18.89 NA 0.009 19.81 19.09 AV 0.72 1.26 0.00 10.03 31.11 Line 2 -18.89 NA 0.009 0.67 19.06 Qp 0.14 0.06 0.00 9.95 29.24 Line 1 NA -26.79 0.009 0.89 19.41 Qp 0.15 0.08 0.00 9.95 29.24 Line 1 NA -26.79 0.009 0.89 19.41 Qp 0.23 0.10 0.00 9.96 29.71 Line 1 NA -26.29 0.009 19.22 22.33 Qp 0.74 1.08 0.00 9.95 29.271 Line 1 NA -26.29 0.009 19.29 22.33 Qp 0.74 1.08 0.00 9.95 26.02 Line 1 NA -25.85 0.009 0.33 15.87 AV 0.15 0.08 0.00 9.95 24.67 Line 1 NA -25.85 0.009 0.67 14.52 AV 0.15 0.08 0.00 9.95 24.66 Line 1 -21.43 NA 0.009 0.99 14.50 AV 0.15 0.08 0.00 9.95 24.66 Line 1 -21.43 NA 0.009 0.99 14.51 AV 0.15 0.08 0.00 9.95 24.66 Line 1 -21.40 NA 0.009 0.99 14.51 AV 0.15 0.08 0.00 9.95 24.66 Line 1 -21.40 NA 0.009 0.58 14.51 AV 0.15 0.08 0.00 9.95 34.23 Line 2 NA -25.33 0.009 0.58 20.36 Qp 0.13 0.05 0.00 9.95 34.23 Line 2 NA -25.33 0.009 0.58 20.36 Qp 0.13 0.05 0.00 9.95 34.23 Line 2 NA -25.33 0.009 0.58 20.36 Qp 0.15 0.00 0.995 30.48 Line 2 NA -25.31 0.009 0.58 20.36 Qp 0.15 0.00 0.995 30.36	2.17	15.04		0.22	0.10	0.00	9.95	25.31		Line 2		NA	- 30.69	0.009
19.81 24.27 Qp	3.91	19.02	Qp	0.30	0.16	0.00	9.96	29.44		Line 2		NA	- 26.56	0.009
0.33	13.04	9.95	Qp											
0.84			Qp											
2.17														
3.91														
13.04 5.00 Av 0.57 0.79 0.00 10.00 16.36 Line 2 -33.64 NA 0.009 19.81 19.09 Av 0.72 1.26 0.00 10.03 31.11 Line 2 -18.89 NA 0.009 12.40														
19.81 19.09 Av 0.72 1.26 0.00 10.03 31.11 Line 2 -18.89 NA 0.009														
L_240V_50Hz_Lulzbot TAZ 6 0.33 19.29 Qp 0.12 0.07 0.00 9.95 29.21 Line 1 NA -30.02 0.009 0.89 19.41 Qp 0.15 0.08 0.00 9.95 29.59 Line 1 NA -26.41 0.009 0.89 19.41 Qp 0.15 0.08 0.00 9.95 29.59 Line 1 NA -26.41 0.009 0.89 19.42 Qp 0.23 0.10 0.00 9.96 29.71 Line 1 NA -26.29 0.009 0.89 19.42 Qp 0.34 0.18 0.00 9.97 30.81 Line 1 NA -26.29 0.009 0.89 19.42 Qp 0.34 0.18 0.00 9.97 30.81 Line 1 NA -26.29 0.009 0.89 19.42 Qp 0.34 0.18 0.00 10.03 34.15 Line 1 NA -25.19 0.009 0.89 19.42 Qp 0.34 0.18 0.00 10.03 34.15 Line 1 NA -25.95 0.009 0.80 14.50 Av 0.14 0.06 0.00 9.95 24.67 Line 1 -23.44 NA 0.009 0.89 14.50 Av 0.15 0.08 0.00 9.95 24.68 Line 1 -21.33 NA 0.009 0.89 14.51 Av 0.34 0.18 0.00 9.96 24.60 Line 1 -21.40 NA 0.009 0.40 15.31 Av 0.34 0.18 0.00 9.97 25.79 Line 1 -20.21 NA 0.009 0.58 20.36 Qp 0.12 0.07 0.00 9.95 34.23 Line 2 NA -25.33 0.009 0.58 20.36 Qp 0.13 0.05 0.00 9.95 37.77 Line 2 NA -25.84 0.009 0.59 19.76 Qp 0.29 0.15 0.00 9.95 32.32 Line 2 NA -25.84 0.009 0.50 19.74 23.94 Qp 0.72 1.25 0.00 10.03 35.94 Line 2 NA -25.44 0.009 0.50 14.81 Av 0.13 0.05 0.00 9.95 32.32 Line 2 NA -25.44 0.009 0.30 14.81 Av 0.12 0.07 0.00 9.95 32.32 Line 2 NA -25.44 0.009 0.31 22.77 Av 0.12 0.07 0.00 9.95 25.84 Line 2 -20.16 NA 0.009 0.33 22.18 Av 0.12 0.07 0.00 9.95 25.84 Line 2 -20.16 NA 0.009 0.34 0.21 0.10 0.00 9.95 25.84 Line 2 -20.16 NA 0.009 0.35 15.71 Av 0.13 0.05 0.00 9.95 25.84 Line 2 -20.16 NA 0.009 0.36 14.81 Av 0.29 0.15 0.00 9.95 25.57 Line 2 -20.30 NA 0.009 0.50 14.81 Av														
19.29	19.81	19.09	AV	0.72	1.26	0.00	10.03	31.11		Line 2		- 18.89	INA	0.009
0.67 19.06 Qp 0.14 0.06 0.00 9.95 29.21 Line 1 NA -26.79 0.009 0.89 19.41 Qp 0.15 0.08 0.00 9.95 29.59 Line 1 NA -26.41 0.009 2.39 19.42 Qp 0.23 0.10 0.00 9.96 29.71 Line 1 NA -26.29 0.009 4.60 20.33 Qp 0.34 0.18 0.00 9.97 30.81 Line 1 NA -25.19 0.009 9.92 22.33 Qp 0.71 1.08 0.00 10.03 34.15 Line 1 NA -25.85 0.009 0.33 15.87 Av 0.12 0.07 0.00 9.95 26.02 Line 1 -23.44 NA 0.09 0.67 14.52 Av 0.14 0.06 0.00 9.95 24.67 Line 1 -21.33 NA 0.009 0.89 <td< td=""><td>L_240\</td><td>√_50Hz_L</td><td>_ulzbot T/</td><td>Z 6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	L_240\	√_50Hz_L	_ulzbot T/	Z 6										
19.41	0.33	19.29	Qp	0.12	0.07	0.00	9.95	29.44		Line 1		NA	- 30.02	0.009
2.39			Qp							Line 1				
4.60 20.33 Qp 0.34 0.18 0.00 9.97 30.81 Line 1 NA -25.19 0.009 19.29 22.33 Qp 0.71 1.08 0.00 10.03 34.15 Line 1 NA -25.85 0.009 0.33 15.87 Av 0.12 0.07 0.00 9.95 26.02 Line 1 -23.44 NA 0.009 0.67 14.52 Av 0.14 0.06 0.00 9.95 24.67 Line 1 -21.33 NA 0.009 0.89 14.50 Av 0.15 0.08 0.00 9.95 24.68 Line 1 -21.32 NA 0.009 2.39 14.31 Av 0.23 0.10 0.00 9.96 24.60 Line 1 -21.40 NA 0.009 4.60 15.31 Av 0.34 0.18 0.00 9.97 25.79 Line 1 -20.21 NA 0.009 19.29														
19.29 22.33 Qp 0.71 1.08 0.00 10.03 34.15 Line 1 NA -25.85 0.009														
0.33 15.87														
0.67 14.52 Av 0.14 0.06 0.00 9.95 24.67 Line 1 -21.33 NA 0.009 0.89 14.50 Av 0.15 0.08 0.00 9.95 24.68 Line 1 -21.32 NA 0.009 2.39 14.31 Av 0.23 0.10 0.00 9.96 24.60 Line 1 -21.40 NA 0.009 4.60 15.31 Av 0.34 0.18 0.00 9.97 25.79 Line 1 -20.21 NA 0.009 19.29 14.57 Av 0.71 1.08 0.00 10.03 26.39 Line 1 -23.61 NA 0.009 N_240V_50Hz_Lulzbot TAZ 6 0.33 24.09 Qp 0.12 0.07 0.00 9.95 34.23 Line 2 NA -25.33 0.009 0.58 20.36 Qp 0.13 0.05 0.00 9.95 30.49 Line 2 NA -25.51 0.009 2.04 17.51 Qp 0.21 0.10 0.00 9.95 27.77 Line 2 NA -28.23 0.009 3.69 19.76 Qp 0.29 0.15 0.00 9.96 30.16 Line 2 NA -25.84 0.009 4.60 20.36 Qp 0.34 0.20 0.00 9.97 30.86 Line 2 NA -25.14 0.009 19.74 23.94 Qp 0.72 1.25 0.00 10.03 35.94 Line 2 NA -24.06 0.009 0.58 15.71 Av 0.13 0.05 0.00 9.95 22.53 Line 2 -20.16 NA 0.009 0.58 15.71 Av 0.13 0.05 0.00 9.95 22.53 Line 2 -20.79 NA 0.009 0.58 14.81 Av 0.29 0.15 0.00 9.96 25.21 Line 2 -20.79 NA 0.009 0.460 15.20 Av 0.34 0.20 0.00 9.97 25.70 Line 2 -20.30 NA 0.009			_											
0.89 14.50 Av 0.15 0.08 0.00 9.95 24.68 Line 1 -21.32 NA 0.009 2.39 14.31 Av 0.23 0.10 0.00 9.96 24.60 Line 1 -21.40 NA 0.009 4.60 15.31 Av 0.34 0.18 0.00 9.97 25.79 Line 1 -20.21 NA 0.009 19.29 14.57 Av 0.71 1.08 0.00 10.03 26.39 Line 1 -23.61 NA 0.009 N_240V_50Hz_Lulzbot TAZ 6 V 0.71 1.08 0.00 9.95 34.23 Line 2 NA -25.33 0.009 0.58 20.36 Qp 0.13 0.05 0.00 9.95 30.49 Line 2 NA -25.51 0.009 2.04 17.51 Qp 0.21 0.10 0.00 9.95 27.77 Line 2 NA -28.23 0.009 3.69														
2.39 14.31 Av 0.23 0.10 0.00 9.96 24.60 Line 1 - 21.40 NA 0.009 4.60 15.31 Av 0.34 0.18 0.00 9.97 25.79 Line 1 - 20.21 NA 0.009 19.29 14.57 Av 0.71 1.08 0.00 10.03 26.39 Line 1 - 23.61 NA 0.009 N_240V_50Hz_Lulzbot TAZ 6 S U														
4.60 15.31 Av 0.34 0.18 0.00 9.97 25.79 Line 1 - 20.21 NA 0.009 19.29 14.57 Av 0.71 1.08 0.00 10.03 26.39 Line 1 - 23.61 NA 0.009 N_240V_50Hz_Lulzbot TAZ 6 S U <														
19.29														
N_240V_50Hz_Lulzbot TAZ 6 0.33														
0.33 24.09 Qp 0.12 0.07 0.00 9.95 34.23 Line 2 NA -25.33 0.009 0.58 20.36 Qp 0.13 0.05 0.00 9.95 30.49 Line 2 NA -25.51 0.009 2.04 17.51 Qp 0.21 0.10 0.00 9.95 27.77 Line 2 NA -28.23 0.009 3.69 19.76 Qp 0.29 0.15 0.00 9.96 30.16 Line 2 NA -25.84 0.009 4.60 20.36 Qp 0.34 0.20 0.00 9.97 30.86 Line 2 NA -25.14 0.009 19.74 23.94 Qp 0.72 1.25 0.00 10.03 35.94 Line 2 NA -24.06 0.009 0.33 22.18 Av 0.12 0.07 0.00 9.95 32.32 Line 2 -17.24 NA 0.009 0.58 <						-								
0.58 20.36 Qp 0.13 0.05 0.00 9.95 30.49 Line 2 NA -25.51 0.009 2.04 17.51 Qp 0.21 0.10 0.00 9.95 27.77 Line 2 NA -28.23 0.009 3.69 19.76 Qp 0.29 0.15 0.00 9.96 30.16 Line 2 NA -25.84 0.009 4.60 20.36 Qp 0.34 0.20 0.00 9.97 30.86 Line 2 NA -25.14 0.009 19.74 23.94 Qp 0.72 1.25 0.00 10.03 35.94 Line 2 NA -24.06 0.009 0.33 22.18 Av 0.12 0.07 0.00 9.95 32.32 Line 2 -17.24 NA 0.009 0.58 15.71 Av 0.13 0.05 0.00 9.95 25.84 Line 2 -20.16 NA 0.009 2.04 <					0.5-			0:55					0.5.00	2.555
2.04 17.51 Qp 0.21 0.10 0.00 9.95 27.77 Line 2 NA -28.23 0.009 3.69 19.76 Qp 0.29 0.15 0.00 9.96 30.16 Line 2 NA -25.84 0.009 4.60 20.36 Qp 0.34 0.20 0.00 9.97 30.86 Line 2 NA -25.14 0.009 19.74 23.94 Qp 0.72 1.25 0.00 10.03 35.94 Line 2 NA -24.06 0.009 0.33 22.18 Av 0.12 0.07 0.00 9.95 32.32 Line 2 -17.24 NA 0.009 0.58 15.71 Av 0.13 0.05 0.00 9.95 25.84 Line 2 -20.16 NA 0.009 2.04 12.27 Av 0.21 0.10 0.00 9.95 22.53 Line 2 -23.47 NA 0.009 4.60 <			•											
3.69 19.76 Qp 0.29 0.15 0.00 9.96 30.16 Line 2 NA - 25.84 0.009 4.60 20.36 Qp 0.34 0.20 0.00 9.97 30.86 Line 2 NA - 25.14 0.009 19.74 23.94 Qp 0.72 1.25 0.00 10.03 35.94 Line 2 NA - 24.06 0.009 0.33 22.18 Av 0.12 0.07 0.00 9.95 32.32 Line 2 - 17.24 NA 0.009 0.58 15.71 Av 0.13 0.05 0.00 9.95 25.84 Line 2 - 20.16 NA 0.009 2.04 12.27 Av 0.21 0.10 0.00 9.95 22.53 Line 2 - 23.47 NA 0.009 3.69 14.81 Av 0.29 0.15 0.00 9.96 25.21 Line 2 - 20.79 NA 0.009 4.60														
4.60 20.36 Qp 0.34 0.20 0.00 9.97 30.86 Line 2 NA - 25.14 0.009 19.74 23.94 Qp 0.72 1.25 0.00 10.03 35.94 Line 2 NA - 24.06 0.009 0.33 22.18 Av 0.12 0.07 0.00 9.95 32.32 Line 2 - 17.24 NA 0.009 0.58 15.71 Av 0.13 0.05 0.00 9.95 25.84 Line 2 - 20.16 NA 0.009 2.04 12.27 Av 0.21 0.10 0.00 9.95 22.53 Line 2 - 23.47 NA 0.009 3.69 14.81 Av 0.29 0.15 0.00 9.96 25.21 Line 2 - 20.79 NA 0.009 4.60 15.20 Av 0.34 0.20 0.00 9.97 25.70 Line 2 - 20.30 NA 0.009														
19.74 23.94 Qp 0.72 1.25 0.00 10.03 35.94 Line 2 NA -24.06 0.009 0.33 22.18 Av 0.12 0.07 0.00 9.95 32.32 Line 2 -17.24 NA 0.009 0.58 15.71 Av 0.13 0.05 0.00 9.95 25.84 Line 2 -20.16 NA 0.009 2.04 12.27 Av 0.21 0.10 0.00 9.95 22.53 Line 2 -23.47 NA 0.009 3.69 14.81 Av 0.29 0.15 0.00 9.96 25.21 Line 2 -20.79 NA 0.009 4.60 15.20 Av 0.34 0.20 0.00 9.97 25.70 Line 2 -20.30 NA 0.009			_											
0.33 22.18 Av 0.12 0.07 0.00 9.95 32.32 Line 2 - 17.24 NA 0.009 0.58 15.71 Av 0.13 0.05 0.00 9.95 25.84 Line 2 - 20.16 NA 0.009 2.04 12.27 Av 0.21 0.10 0.00 9.95 22.53 Line 2 - 23.47 NA 0.009 3.69 14.81 Av 0.29 0.15 0.00 9.96 25.21 Line 2 - 20.79 NA 0.009 4.60 15.20 Av 0.34 0.20 0.00 9.97 25.70 Line 2 - 20.30 NA 0.009														
0.58 15.71 Av 0.13 0.05 0.00 9.95 25.84 Line 2 - 20.16 NA 0.009 2.04 12.27 Av 0.21 0.10 0.00 9.95 22.53 Line 2 - 23.47 NA 0.009 3.69 14.81 Av 0.29 0.15 0.00 9.96 25.21 Line 2 - 20.79 NA 0.009 4.60 15.20 Av 0.34 0.20 0.00 9.97 25.70 Line 2 - 20.30 NA 0.009														
2.04 12.27 Av 0.21 0.10 0.00 9.95 22.53 Line 2 -23.47 NA 0.009 3.69 14.81 Av 0.29 0.15 0.00 9.96 25.21 Line 2 -20.79 NA 0.009 4.60 15.20 Av 0.34 0.20 0.00 9.97 25.70 Line 2 -20.30 NA 0.009														
3.69 14.81 Av 0.29 0.15 0.00 9.96 25.21 Line 2 - 20.79 NA 0.009 4.60 15.20 Av 0.34 0.20 0.00 9.97 25.70 Line 2 - 20.30 NA 0.009														
4.60 15.20 Av 0.34 0.20 0.00 9.97 25.70 Line 2 -20.30 NA 0.009														
	19.74	18.55	Av			0.00		30.55		Line 2			NA	

Model LulzBot TAZ 6 Page 23 of 60

Intertek

Report Number: 102442722DEN-001 Issued: 01/21/2016

FREQ	LEVEL	DET	CABLE	LISN	PREAMP	ATTEN	FINAL	TEST P	OINT	DELTA1	DELTA2	RBW
		Qp						Othe	r -	FCC	FCC	
		Av								15.107	15.107	
MHz	dBuV	Pk	+ [dB]	+ [dB/m]	- [dB]	+ [dB]	= [dBuV]	N - L1 - l	.2 - L3	B_Qp	B_Av	(MHz)
						'						
L_120\	√_60Hz_L	ulzbot T/	\Z 6									
0.33	20.13	Qp	0.12	0.08	0.00	9.95	30.28	Line	1	- 29.21	NA	0.009
0.92	17.04	Qp	0.15	0.08	0.00	9.95	27.22	Line	1	- 28.78	NA	0.009
2.39	18.81	Qp	0.23	0.10	0.00	9.96	29.10	Line	1	- 26.90	NA	0.009
4.63	17.25	Qp	0.34	0.18	0.00	9.97	27.73	Line	1	- 28.27	NA	0.009
14.29	11.05	Qp	0.60	0.86	0.00	10.01	22.51	Line	1	- 37.49	NA	0.009
20.19	29.23	Qp	0.73	1.26	0.00	10.03	41.25	Line	1	- 18.75	NA	0.009
0.33	16.95	Αv	0.12	0.08	0.00	9.95	27.10	Line	1	NA	- 22.39	0.009
0.92	11.97	Av	0.15	0.08	0.00	9.95	22.15	Line	1	NA	- 23.85	0.009
2.39	14.03	Αv	0.23	0.10	0.00	9.96	24.32	Line	1	NA	- 21.68	0.009
4.63	12.49	Αv	0.34	0.18	0.00	9.97	22.97	Line	1	NA	- 23.03	0.009
14.29	3.81	Αv	0.60	0.86	0.00	10.01	15.27	Line	1	NA	- 34.73	0.009
20.19	23.92	Av	0.73	1.26	0.00	10.03	35.94	Line	1	NA	- 14.06	0.009
N_120		Lulzbot T/	-									
0.26	25.08	Qp	0.12	0.07	0.00	9.95	35.22	Line	2	- 26.25	NA	0.009
0.53	19.51	Qp	0.13	0.05	0.00	9.95	29.64	Line	2	- 26.36	NA	0.009
1.40	19.43	Qp	0.18	0.08	0.00	9.95	29.64	Line	2	- 26.36	NA	0.009
4.63	18.91	Qp	0.34	0.20	0.00	9.97	29.42	Line	2	- 26.58	NA	0.009
14.74	12.12	Qp	0.61	1.00	0.00	10.01	23.74	Line	2	- 36.26	NA	0.009
20.38	26.99	Qp	0.73	1.38	0.00	10.03	39.14	Line	2	- 20.86	NA	0.009
0.26	21.79	Av	0.12	0.07	0.00	9.95	31.93	Line	2	NA	- 19.54	0.009
0.53	16.25	Av	0.13	0.05	0.00	9.95	26.38	Line	2	NA	- 19.62	0.009
1.40	14.41	Av	0.18	0.08	0.00	9.95	24.62	Line	2	NA	- 21.38	0.009
4.63	14.44	Av	0.34	0.20	0.00	9.97	24.95	Line	2	NA	- 21.05	0.009
14.74	4.00	Av	0.61	1.00	0.00	10.01	15.62	Line		NA	- 34.38	0.009
20.38	21.80	Av	0.73	1.38	0.00	10.03	33.95	Line	2	NA	- 16.05	0.009

Test Personnel:	Son La	Test Date:	1/19/2016
Supervising/Reviewing			
Engineer:			
(Where Applicable)	Michael Spataro		
Product Standard:	CISPR 22/FCC15 Subpart B	Limit Applied:	Class B
Input Voltage:	120V, 60Hz, 230V, 240V, 50hz		
Pretest Verification w/		Ambient Temperature:	22.2 °C
Ambient Signals or		Relative Humidity:	16.4 %
BB Source:	Yes	,	
		Atmospheric Pressure:	836.8 mbars

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 24 of 60

8 Harmonics

8.1 Method

Tests are performed in accordance with IEC 61000-3-2.

TEST SITE: Ground Plane

Site Designation:

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Measurement Uncertainty

Measurement	Parameter	Expanded Uncertainty (k=2)	Permitted Error
Harmonics	Current	3%	±5.0%

As shown in the table above our Expanded Measurement Uncertainty for harmonic current U_{lab} is less than the corresponding measurement error allowed by IEC61000-3-2 and IEC61000-4-7, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required. There are currently no $U_{\it CISPR}$ reference values in CISPR 16 for Harmonics.

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
			5001IX-CTS-			
18815	Flicker and Harmonics Equipment	CALIFORNIA INSTRUMEN	LNS-160	71643	10/6/2015	10/6/2016
LAB-012	Wireless BP, Tem and Humidity sensor	Omega	zED-BTH	0070368	9/01/2015	9/1/2016

Software Utilized:

Name	Manufacturer	Version
SW-1: Software application for Harmonics and Flicker	California Inst.	OATS cvi, V.1.0

8.3 Results:

The sample tested was found to Comply.

Model LulzBot TAZ 6 Page 25 of 60

8.4 Setup Photographs:

Test setup

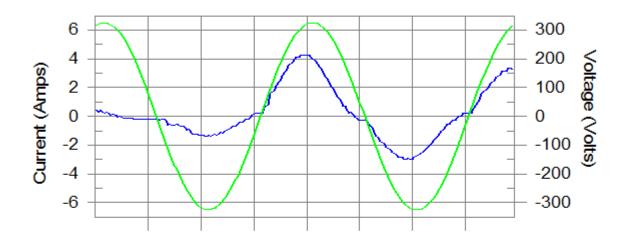
Test setup - Close up

Model LulzBot TAZ 6 Page 26 of 60

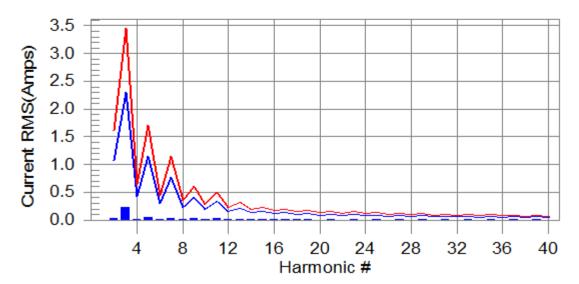
Issued: 01/21/2016 Report Number: 102442722DEN-001

8.5 Plots/Data:

Harmonics - Class-A per Ed. 3.2 (2009)(Run time)


EUT: Model: Lulzbot TAZ 6 Tested by: Son La Test category: Class-A per Ed. 3.2 (2009) (European limits)
Test date: 1/19/2016 Start time: 6:39:58 PM
Test duration (min): 30 Data file name: H-000014.cts Test Margin: 100 End time: 7:10:20 PM

Data file name: H-000014.cts data


Comment: European Voltage 230V Customer: Aleph Objects

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line **European Limits**

Test result: Pass Worst harmonic was #23 with 10.27% of the limit.

Model LulzBot TAZ 6 Page 27 of 60

Current Test Result Summary (Run time)

EUT: Model: Lulzbot TAZ 6 Tested by: Son La Test category: Class-A per Ed. 3.2 (2009) (European limits) Test date: 1/19/2016 Start time: 6:39:58 PM Test Margin: 100 End time: 7:10:20 PM

Test duration (min): 30 Data file name: H-000014.cts data

Comment: European Voltage 230V

Customer: Aleph Objects

Test Result: Pass Source qualification: Normal THC(A): 0.21 I-THD(%): 14.45 POHC(A): 0.000 POHC(A): 0.000 POHC Limit(A): 0.251

Highest parameter values during test:

V_RMS (Volts): 230.02

I_Peak (Amps): 4.338

I_Fund (Amps): 1.714

Power (Watts): 379.1 50.00 Frequency(Hz): I RMS (Amps): Crest Factor: 1.973 5.280 Power Factor: 0.912

	rower (watts)	. 313.1		rower ractor.	0.312		
Harm#	<u>Harms(</u> avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.021	1.080	1.9	0.037	1.620	2.27	Pass
2 3 4 5	0.197	2.300	8.6	0.235	3.450	6.82	Pass
4	0.005	0.430	1.2	0.016	0.645	2.43	Pass
5	0.044	1.140	3.9	0.053	1.710	3.09	Pass
6	0.003	0.300	1.1	0.009	0.450	1.95	Pass
7	0.029	0.770	3.8	0.036	1.155	3.08	Pass
8	0.003	0.230	1.1	0.007	0.345	2.01	Pass
9	0.019	0.400	4.7	0.025	0.600	4.13	Pass
10	0.002	0.184	1.2	0.006	0.276	2.25	Pass
11	0.017	0.330	5.2	0.021	0.495	4.28	Pass
12	0.002	0.153	1.3	0.006	0.230	2.39	Pass
13	0.013	0.210	6.4	0.017	0.315	5.31	Pass
14	0.002	0.131	1.2	0.004	0.197	2.22	Pass
15	0.009	0.150	6.0	0.011	0.225	4.71	Pass
16	0.001	0.115	1.3	0.004	0.173	2.33	Pass
17	0.007	0.132	5.2	0.011	0.199	5.66	Pass
18	0.001	0.102	1.3	0.003	0.153	2.21	Pass
19	0.005	0.118	4.0	0.009	0.178	5.22	Pass
20	0.001	0.092	1.4	0.003	0.138	2.24	Pass
21	0.005	0.107	4.7	0.009	0.161	5.88	Pass
22	0.001	0.084	1.5	0.003	0.125	2.33	Pass
23	0.007	0.098	6.9	0.015	0.147	10.27	Pass
24	0.001	0.077	1.6	0.003	0.115	2.43	Pass
25	0.005	0.090	5.9	0.008	0.135	5.64	Pass
26 27	0.001 0.005	0.071 0.083	1.4 6.0	0.002 0.007	0.106 0.125	2.31 5.33	Pass
28						2.44	Pass
	0.001 0.005	0.066 0.078	1.6	0.002 0.007	0.099 0.116	5.67	Pass
29 30			6.0 1.5			2.57	Pass
30 31	0.001 0.004	0.061 0.073	5.5	0.002 0.007	0.092 0.109	6.40	Pass
32	0.004	0.073	1.6	0.007	0.109	2.34	Pass Pass
33	0.001	0.058	4.7	0.002	0.102	4.81	Pass
34	0.003	0.054	1.7	0.003	0.102	2.29	Pass
35	0.001	0.054	4.4	0.002	0.096	4.80	Pass
36	0.003	0.051	1.9	0.003	0.036	2.52	Pass
37	0.004	0.061	5.8	0.002	0.077	5.57	Pass
38	0.004	0.048	1.8	0.002	0.073	2.66	Pass
39	0.003	0.058	5.1	0.002	0.013	5.07	Pass
40	0.001	0.046	2.3	0.002	0.069	2.84	Pass

Model LulzBot TAZ 6 Page 28 of 60

Voltage Source Verification Data (Run time)

EUT: Model: Lulzbot TAZ 6 Tested by: Son La Test category: Class-A per Ed. 3.2 (2009) (European limits)
Test date: 1/19/2016 Start time: 6:39:58 PM Test Margin: 100 End time: 7:10:20 PM

Test duration (min): 30 Data file name: H-000014.cts data

Comment: European Voltage 230V

Customer: Aleph Objects

Test Result: Pass Source qualification: Normal

Highest parameter values during test:
Voltage (Vrms): 230.02
I_Peak (Amps): 4.338
I_Fund (Amps): 1.714
Power (Watts): 379.1 Frequency(Hz): 50.00 I_RMS (Amps): Crest Factor: 1.973 5.280 Power Factor: 0.912

Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.069	0.460	15.04	ok
2 3 4 5 6 7	0.394	2.070	19.04	ОK
4	0.051	0.460	11.02	OK
5	0.057	0.920	6.23	OK
6	0.025	0.460	5.41	OK
7	0.029	0.690	4.17	OK
8	0.028	0.460	6.09	OK
9	0.020	0.460	4.30	OK
10	0.016	0.460	3.53	OK
11	0.016	0.230	7.14	OK
12	0.018	0.230	7.96	OK
13	0.014	0.230	6.28	OK
14	0.009	0.230	3.97	OK
15	0.011	0.230	4.69	OK
16	0.012	0.230	5.35	OK
17	0.013	0.230	5.76	OK
18	0.014	0.230	6.16	OK
19	0.012	0.230	5.06	OK
20	0.016	0.230	7.07	OK
21	0.013	0.230	5.80	OK
22	0.008	0.230	3.55	OK
23	0.013	0.230	5.66	oĸ
24	0.006	0.230	2.82	OK
25	0.011	0.230	4.87	OK
26	0.008	0.230	3.40	oĸ
27	0.008	0.230	3.67	oĸ
28	0.006	0.230	2.66	oĸ
29	0.011	0.230	4.85	oĸ
30	0.007	0.230	3.20	oĸ
31	0.012	0.230	5.33	oĸ
32	0.006	0.230	2.72	oĸ
33	0.008	0.230	3.39	oĸ
34	0.004	0.230	1.54	oĸ
35	0.006	0.230	2.47	oĸ
36	0.004	0.230	1.93	oĸ
37	0.011	0.230	4.90	oĸ
38	0.003	0.230	1.14	oĸ
39	0.007	0.230	3.10	oĸ
40	0.012	0.230	5.22	OK

Model LulzBot TAZ 6 Page 29 of 60

Intertek

Report Number: 102442722DEN-001 Issued: 01/21/2016

Test Personnel:	Son La	Test Date:	1/19/2016
Supervising/Reviewing			
Engineer:			
(Where Applicable)	Michael Spataro		
Product Standard:	EN61000-3-2	Limit Applied:	A
Input Voltage:	230V/50Hz		
Pretest Verification w/		Ambient Temperature:	22.1 °C
Artifact:		Relative Humidity:	16.6 %
		Atmospheric Pressure:	836.8 mbars

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 30 of 60

9 Flicker

9.1 Method

Tests are performed in accordance with IEC 61000-3-3.

TEST SITE: Ground Plane

Site Designation:

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Measurement Uncertainty

Measurement	Parameter	Expanded Uncertainty (k=2)	Permitted Error
Flicker	Pst	4 %	±8.0%
Flicker	dc	4 %	±8.0%

As shown in the table above our Expanded Measurement Uncertainty for Pst and dc $U_{\it lab}$ is less than the corresponding measurement error allowed by IEC 61000-3-3, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required. There are currently no $U_{\it CISPR}$ reference values in CISPR 16 for Flicker.

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
			5001IX-CTS-			
18815	Flicker and Harmonics Equipment	CALIFORNIA INSTRUMEN	LNS-160	71643	10/6/2015	10/6/2016
LAB-012	Wireless BP, Tem and Humidity sensor	Omega	zED-BTH	0070368	9/01/2015	9/1/2016

Software Utilized:

Contrar o Chine Can					
Name	Manufacturer	Version			
SW-1: Software application for Harmonics and Flicker	California Inst.	OATS cvi, V.1.0			

9.3 Results:

The sample tested was found to Comply.

Model LulzBot TAZ 6 Page 31 of 60

9.4 Setup Photographs:

Test setup

Test setup - Close up

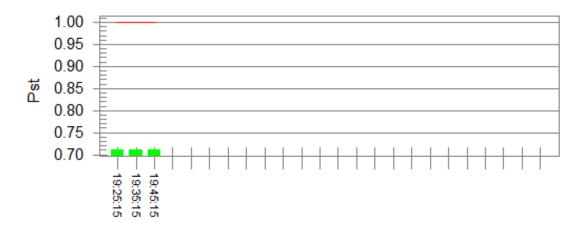
Model LulzBot TAZ 6 Page 32 of 60

9.5 Plots/Data:

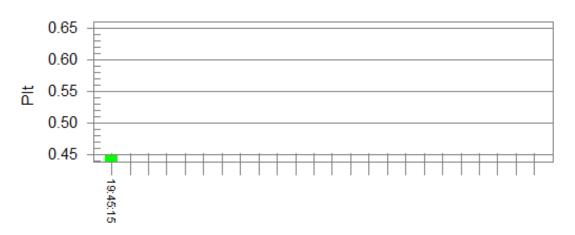
Flicker Test Summary per EN/IEC61000-3-3_(Run time)

EUT: Model: Lulzbot TAZ 6
Test category: All parameters (European limits)
Test date: 1/19/2016 Start time: 7:14:55 PM
Tested by: Son La
Test Margin: 100
End time: 7:45:16 PM

Test duration (min): 30 Data file name: F-000015.cts_data


Comment: European Voltage 230V

Customer: Aleph Objects


Test Result: Pass Status: Test Completed

Pst and limit line

European Limits

Plt and limit line

Parameter values recorded during the test:

229.12			
0.44	Test limit (%):	3.30	Pass
0.0	Test limit (mS):	500.0	Pass
-0.22	Test limit (%):	3.30	Pass
0.48	Test limit (%):	4.00	Pass
0.711	Test limit:	1.000	Pass
0.448	Test limit:	0.650	Pass
	0.44 0.0 -0.22 0.48 0.711	0.44 Test limit (%): 0.0 Test limit (m \$): -0.22 Test limit (%): 0.48 Test limit (%): 0.711 Test limit:	0.44 Test limit (%): 3.30 0.0 Test limit (m \$): 500.0 -0.22 Test limit (%): 3.30 0.48 Test limit (%): 4.00 0.711 Test limit: 1.000

Model LulzBot TAZ 6 Page 33 of 60

Intertek

Report Number: 102442722DEN-001 Issued: 01/21/2016

Test Personnel: Son La Test Date: 1/19/2016

Supervising/Reviewing Engineer: (Where Applicable) Product Standard: EN61000-3-3 Limit Applied: A Input Voltage: Pretest Verification w/ Artifact: Artifact: Artifact: Test Date: 1/19/2016

Michael Spataro EN61000-3-3 Limit Applied: A A Input Voltage: 230V/50Hz

Ambient Temperature: 22.1 °C Relative Humidity: 16.6 % Atmospheric Pressure: 836.8 mbars

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 34 of 60

10 Electrostatic Discharge Immunity Test

10.1 Method

Tests are performed in accordance with IEC 61000-4-2.

TEST SITE: Ground Plane

Site Designation:

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

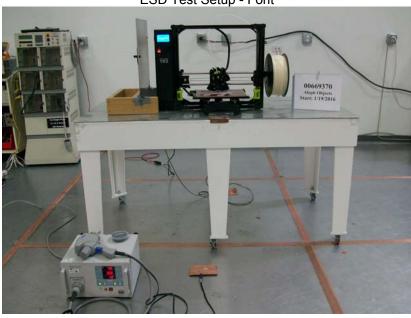
The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

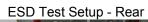
10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DEN-034	ESD Simulator and Gun	NOISEKEN	ESS-2002	ESS0838103	06/21/15	06/21/16
DEN-077	2 Channel 500 MHz Oscilloscope	TEKTRONIX	TDS 520	B022197	02/20/15	02/20/16
DEN-144	Precision Psychrometer	Extech Instruments	RH390	12083570	09/04/15	09/04/16
DEN-136	DMM	Fluke	87 V	20100152	816/2015	8/16/2016
LAB-012	Wireless BP, Tem and Humidity sensor	Omega	zED-BTH	0070368	9/01/2015	9/1/2016

Software Utilized:

Name	Manufacturer	Version
None.		

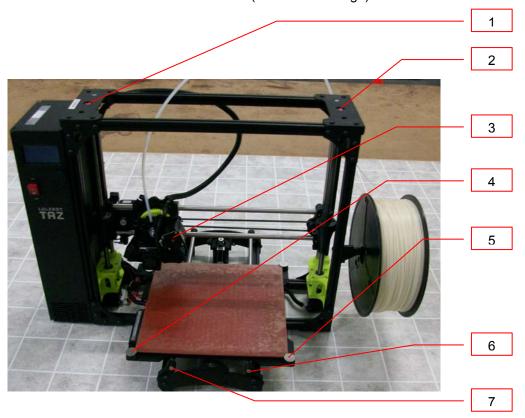

10.3 Results:

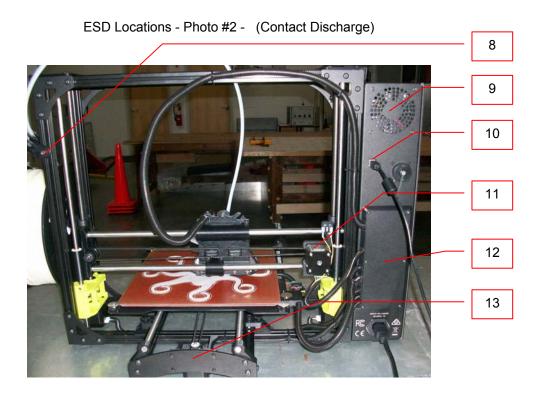

The sample tested was found to Comply.

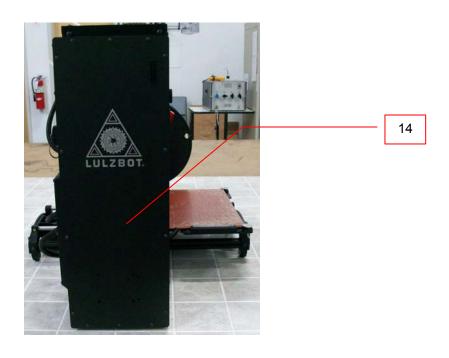
Model LulzBot TAZ 6 Page 35 of 60

10.4 Setup Photographs:

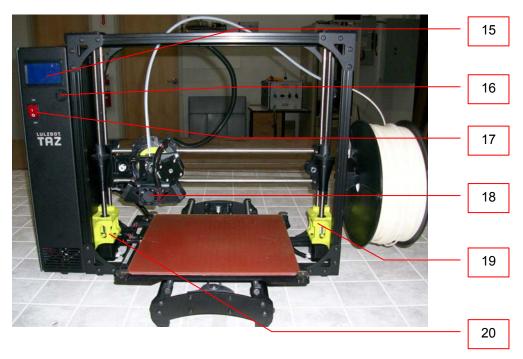
ESD Test Setup - Font



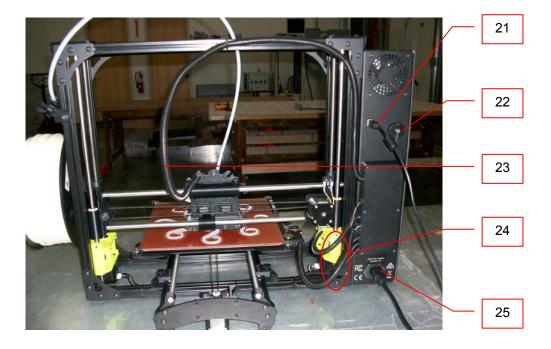

Model LulzBot TAZ 6 Page 36 of 60


ESD Locations - Photo #1 - (Contact Discharge)

Model LulzBot TAZ 6 Page 37 of 60



ESD Locations - Photo #3 - (Contact Discharge)



Model LulzBot TAZ 6 Page 38 of 60

ESD Locations - Photo #4 - (Air Discharge)

ESD Locations - Photo #5 - (Air Discharge)

Model LulzBot TAZ 6 Page 39 of 60

10.5 Data:

Toot	Discharge		Test Voltages, Polarities and Result Classification											
Test Point	Voltage	21	kV	4	κV	6	kV	81	kV		15	kV		kV
FOIL	Type	Pos	Neg	Pos	Neg	Pos	Neg	Pos	Neg		Pos	Neg	Pos	Neg
HCP	Contact			Α :	Α									
VCP	Contact			Α :	Α					≥				
1-14	Contact			: A	Α					ω ω				
15-25	Air	: ND	: ND	: ND :	ND	: ND	: ND :	ND	. ND	above				
										ab				
										only				
										jes				
										arç				
				: :						l S		•		
										Discharge				
										Air				

Test Personnel:	Son La	Test Date:	1/20/2016
Supervising/Reviewing Engineer:			
(Where Applicable)	Michael Spataro	Required Performance:	В
Product Standard:	EN 61000-4-2	Test Levels:	+/- 4kV contact, +/- 2kV, 4kV 8kV air 25 pulses per voltage per polarity
Input Voltage:	230V/50Hz		
Waveform Verified on		Ambient Temperature:	21.8 °C
Oscilloscope:	Yes	Relative Humidity:	12.0 %
470k x 2 Strap(s)	895kO	Atmospheric Pressure:	828.9 mbars

Notes:

- (1) Discharged to Horizontal Coupling Plane, 4 locations.
- (2) Discharged to Vertical Coupling Plane, 4 locations
- (3) No discharge (ND) to the test point of interest.
- (4) Product meets A as indicated in above matrix
- (5) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 40 of 60

11 Radiated, radio-frequency, electromagnetic field immunity test

11.1 Method

Tests are performed in accordance with IEC 61000-4-3.

TEST SITE: CC2

Site Designation:

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	<u>Serial</u>	Cal Date	Cal Due
18763	30DB Directional Coupler	WERLATONE	C5091	5768	05/16/2015	05/16/2016
18708	RF Electric Field Probe	Amplifier Research	FP5080	20238	04/01/2015	04/01/2016
18739	Power Meter (set 3)	Hewlett-Packard	436A	2446A21023	02/18/2015	02/18/2016
18764	Antenna	EMCO	3142	9706-1190	VBU	VBU
18769	Directional Coupler (1.7-12.4 GHz)	Hewlett-Packard	779D	1144A05973	6/5/2015	6/6/2016
18775	Power Sensor (set 1)	Hewlett-Packard	8482A	2625A12387	10/16/2014	10/16/201
18777	Directional Coupler (80-1000 MHz)	WERLATONE	C3736	4153	05/14/2015	05/14/201
18779	Broadband amplifier (80MHz - 1GHz)	Amplifier Research	200W1000M7A	16049	VBU	VBU
18781	Signal Generator	MARCONI INSTRUMENTS	2031	119537	4/24/2015	4/24/2016
18796	High-gain Horn Antenna	Amplifier Research	AT4510	27653	VBU	VBU
DEN-003	10W .8-4.2GHz amplifier	Amplifier Research	10S1G4A	0327889	VBU	VBU

Software Utilized:

Name	Manufacturer	Version
SW-7: Software application for Radiated and Conducted Immunity.	CKC	EMITest V.3.15.1

11.3 Results:

The sample tested was found to Comply.

Model LulzBot TAZ 6 Page 41 of 60

11.4 Setup Photographs:

Test setup – Front

Test setup – Rear

Model LulzBot TAZ 6 Page 42 of 60

11.5 Data:

Field	Frequency	Antenna Polarity, Azimuths and Result Classification								
Level	Range		Vertical				Horizontal			
(V/m)	MHz	0	90	180	270	0	90	180	270	
3	80-1000	: A	Α	. A	. A	: A	Α	: A	: A	
			-	-		:			-	
	1	:								

Test Personnel:	Son La	Test Date:	1/19/2016
Supervising/Reviewing		Modulation:	80% at 1kHz
Engineer: (Where Applicable)	Michael Spataro	Required Performance:	A
Product Standard:	EN61000-4-3	Test Levels:	See Table Above
Input Voltage:	230V/50Hz		
		Ambient Temperature:	22.0 °C
Field Level Monitored:	Yes	Relative Humidity:	16.8 %
		Atmospheric Pressure:	836.8 mbars

Notes:

(1) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 43 of 60

12 Electrical Fast Transient/Burst Immunity Test

12.1 Method

Tests are performed in accordance with IEC 61000-4-4.

TEST SITE: Ground Plane

Site Designation:

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

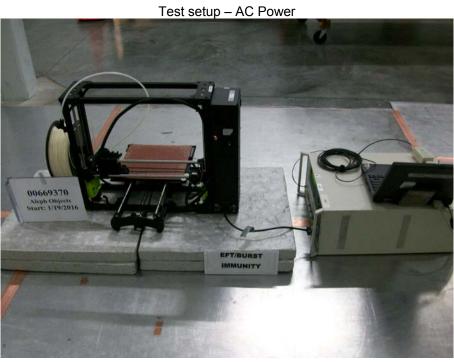
The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
18813	EMC Pro Surge/EFT Generator	KeyTek	EMC Pro	9904187	04/21/2015	04/21/2016
DEN-077	2 Channel 500 MHz Oscilloscope	TEKTRONIX	TDS 520	B022197	02/20/15	02/20/16
LAB-012	Wireless BP, Tem and Humidity sensor	Omega	zED-BTH	0070368	909/01/2015	9/1/2016

Software Utilized:


Name	Manufacturer	Version
SW-3: Software application for control	KeyTek	CEWare 32, V.3.0
of EMCpro, 4-4/4-5 testing.		


12.3 Results:

The sample tested was found to Comply.

Model LulzBot TAZ 6 Page 44 of 60

12.4 Setup Photographs:

Model LulzBot TAZ 6 Page 45 of 60

12.5 Test Data:

		Test Voltages, Polarities, and Result Classification									
Test	Coupling	0.2	5kV	0.	5kV	1	kV	2	kV	4	κV
Point	Method	pos	neg	pos	neg	pos	neg	pos	neg	pos	neg
Power L1	Direct					Α	Α				
Power L2	Direct					Α	Α				
Power PE	Direct					Α	Α				

Test Personnel:	Duan Wei Lin	_ Test Date:	1/19/2016
Supervising/Reviewing Engineer: (Where Applicable)	Michael Spataro	Pulse Repetition Frequency: Required Performance:	5kHz B
Product Standard: Input Voltage:	EN 61000-4-4 230V/50Hz	Test Levels:	See Table Above
Waveform Verified on		Ambient Temperature:	20.6 °C
Oscilloscope:	Yes	Relative Humidity:	12.9 %
		Atmospheric Pressure:	830.2 mbars

Notes:

(1) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 46 of 60

13 Immunity to Surge

13.1 Method

Tests are performed in accordance with IEC 61000-4-5.

TEST SITE: Ground Plane

Site Designation:

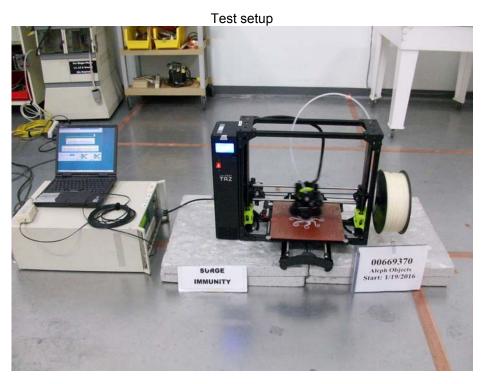
This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

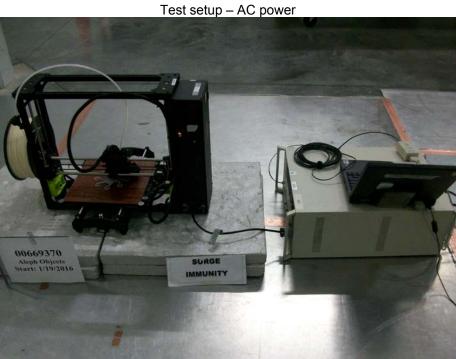
The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

13.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
18813	EMC Pro Surge/EFT Generator	KeyTek	EMC Pro	9904187	04/21/2015	04/21/2016
DEN-077	2 Channel 500 MHz Oscilloscope	TEKTRONIX	TDS 520	B022197	02/20/15	02/20/16
LAB-012	Wireless BP, Tem and Humidity sensor	Omega	zED-BTH	0070368	909/01/2015	9/1/2016

Software Utilized:


Name	Manufacturer	Version
SW-3: Software application for control of EMCpro, 4-4/4-5 testing.	KeyTek	CEWare 32, V.3.0


13.3 Results:

The sample tested was found to Comply.

Model LulzBot TAZ 6 Page 47 of 60

13.4 Setup Photographs:

Model LulzBot TAZ 6 Page 48 of 60

13.5 Test Data:

		Test Voltages, Polarities, and Result Classification						
	0.5	kV	1	kV	21	kV	41	κV
Test	pos	neg	pos	neg	pos	neg	pos	neg
L1-PE, at 0 deg	. A	Α	Α	Α .	Α .	Α .		
L1-PE, at 90 deg	. A	Α	Α	: A	Α	Α		
L1-PE, at 180 deg	Α	Α	Α	Α	Α	Α		
L1-PE, at 270 deg	: A	Α	Α	: A	Α	. A		
N-PE, at 0 deg	Α	Α	Α	Α	Α	Α		
N-PE, at 90 deg	: A	Α	Α .	: A	Α .	Α .		
N-PE, at 180 deg	: A	Α	Α	Α .	Α	Α		
N-PE, at 270 deg	Α :	Α	Α	: A	Α	Α		
L1-N, at 0 deg	Α	Α	Α	A				
L1-N, at 90 deg	Α	Α	Α	A				
L1-N, at 180 deg	Α .	Α	Α	A				
L1-N, at 270 deg	Α	Α	Α	Α				

Test Personnel:	Son La	Test Date:	1/19/2016 and 1/20/2016
Supervising/Reviewing			
Engineer:			
(Where Applicable)	Michael Spataro	Required Performance:	В
Product Standard:	EN 61000-4-5	Test Levels:	See Table Above
Input Voltage:	230V/50HZ		
Waveform Verified on		Ambient Temperature:	20.6 °C
Oscilloscope:	Yes	Relative Humidity:	12.9 %
•		Atmospheric Pressure:	830.2 mbars

Notes:

(1) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 49 of 60

14 Conducted, radio-frequency, electromagnetic field immunity test

14.1 Method

Tests are performed in accordance with IEC 61000-4-6.

TEST SITE: CC2

Site Designation:

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

14.2 Test Equipment Used:

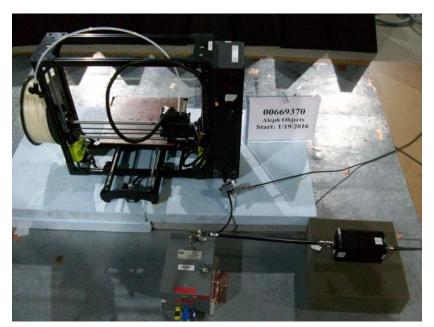
Asset	<u>Description</u>	Manufacturer	Model	<u>Serial</u>	Cal Date	Cal Due
18859	RF Current Probe	Fischer Custom Communications	F-62	33	5/20/2015	05/19/2016
18724	6 db Attenuator	JFW	50FH-006-100	00332	05/01/2015	05/01/2016
18816	Coupling / Decoupling Network	Fisher Custom Comm.	FCC-801-M3-16A	9953	06/22/2015	06/22/2016
18739	Power Meter (set 3)	Hewlett-Packard	436A	2446A21023	02/18/2015	02/18/2016
DEN-030	30DB Directional Coupler	WERLATONE	C5091	5768	05/16/2015	05/16/2016
18740	Power Sensor Set 3	Hewlett-Packard	8482A	2349A14570	02/19/2015	02/19/2016
18781	Signal Generator	MARCONI INSTRUMENTS	2031	119537	4/24/2015	04/24/2016
LAB-012	Wireless BP, Tem and Humidity sensor	Omega	zED-BTH	0070368	909/01/2015	09/01/2016

Software Utilized:

Name	Manufacturer	Version
SW-7: Software application for Radiated and Conducted Immunity.	CKC	EMITest V.3.15.1

14.3 Results:

The sample tested was found to Comply.


Model LulzBot TAZ 6 Page 50 of 60

14.4 Setup Photographs:

Test setup – Front

Test setup – AC power

Model LulzBot TAZ 6 Page 51 of 60

Intertek

Report Number: 102442722DEN-001 Issued: 01/21/2016

Test Data:

Injection Device Type	Port Description	Test Level (Vrms)	Result Classification
CDN	AC power	3	А
		1	
		! !	

Test Personnel:	Son La	Test Date:	1/19/2016
Supervising/Reviewing Engineer:		Modulation: Required Performance:	
(Where Applicable)	Michael Spataro	Required Feriormance.	A
Product Standard:	EN61000-4-6	Test Levels:	See Table Above
Input Voltage:	230V/50Hz		
Test Level Verification		Ambient Temperature:	22.0 °C
Performed:	Yes	Relative Humidity:	16.8 %
		Atmospheric Pressure:	836.8 mbars

Notes:

(1) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 52 of 60

15 Voltage Dips / Interruptions Immunity Tests

15.1 Method

Tests are performed in accordance with IEC 61000-4-11.

TEST SITE: Ground Plane

Site Designation:

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

15.2 Test Equipment Used:

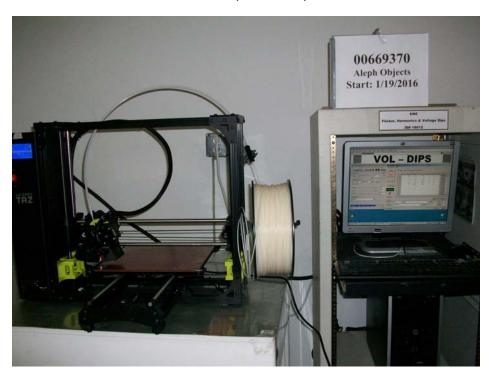
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
18815	Flicker and Harmonics Equipment	CALIFORNIA INSTRUMEN	5001IX-CTS-LNS-160	71643	10/6/2015	10/6/2016
	Wireless BP, Tem and Humidity					
LAB-012	sensor	Omega	zED-BTH	0070368	909/01/2015	9/1/2016

Software Utilized:

Name	Manufacturer	Version
SW-1: Software Application for 61000- 4-11 testing with California Inst. Power	California Inst.	GUI 32, V. 1.27.0.7
supply.		

15.3 Results:

The sample tested was found to Comply.


Model LulzBot TAZ 6 Page 53 of 60

15.4 Setup Photographs:

Test setup - Close up

Page 54 of 60 Model LulzBot TAZ 6

Issued: 01/21/2016 Report Number: 102442722DEN-001

15.5 Test Data:

On a differentia m	Rated	Frequency	Voltage Test	Voltage	Test	Duration (Periods)		sult fication
Specification	Voltage (Vac)	(Hz)	Level (%)	Dip (%)	Voltage (Vac)		0 deg	Requ.
Test Specification #1	100-240	50	>95	0	100	0.5	Α	В
Test Specification #2	100-240	50	30	70	100	25	Α	С
Test Specification #3	100-240	50	>95	0	100	250	C (2)	С
Test Specification #1	100-240	50	>95	0	240	0.5	Α	В
Test Specification #2	100-240	50	30	70	240	25	Α	С
Test Specification #3	100-240	50	>95	0	240	250	C (2)	С

Test Personnel:	Son La	Test Date:	1/19/2016
Supervising/Reviewing			
Engineer:			
(Where Applicable)	Michael Spataro	Required Performance:	B and C
Product Standard:	EN61000-4-11	Test Levels:	See Table Above
Input Voltage:	100-240V, 50/60Hz		
Waveform Verified on		Ambient Temperature:	22.1 °C
Oscilloscope:		Relative Humidity:	16.6 %
·		Atmospheric Pressure:	836.8 mbars

Notes:

- (1) The EUT met the requirements without any degradation of performance.(2) The product has no battery backup therefore, voltage interruption performance Criterion "C"

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 55 of 60

16 Power Frequency Magnetic Field Immunity Test

16.1 Method

The test methods used comply with ANSI C63.4 and CISPR 16. Unless otherwise stated no deviations were made from IEC 61000-4-8.

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

TEST SITE: Ground Plane

Site Designation:

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

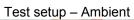
The EMC Lab has one Semi-anechoic Chamber and Fully-anechoic Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

16.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
18705	Auto Transformer	POWERSTAT	3PN226	124202	VBU	VBU
DEN-044	ELT-400 Exposure Level Tester	NARDA	2304/03	M-0356	08/13/15	08/13/16
18949	AC/DC Low Current Clamp Meter	LEM HEME	LH41	106140063335	02/19/15	02/19/16
DEN-144	Precision Psychrometer	Extech Instruments	RH390	12083570	09/04/15	09/04/16

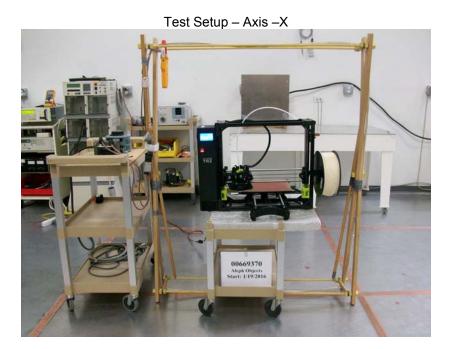
Software Utilized:

Name	Manufacturer	Version
None.		


16.3 Results:

The sample tested was found to Comply.

Model LulzBot TAZ 6 Page 56 of 60


Test setup – Ambient

Model LulzBot TAZ 6 Page 57 of 60

Test Setup – Axis – Y

Model LulzBot TAZ 6 Page 58 of 60

16.4 Test Data:

Test Location/ Mode/ EUT AC Input	Test Level (A/m)	Frequency (Hz)	Res X- Axis	sult Classifica Y- Axis	tion Z- Axis
Enclosure/ Operating/ 230 Vac, 50 Hz	30	50	Α	Α	Α
Enclosure/ Stand-by/ 230 Vac, 60 Hz	30	60	Α	Α	Α

Test Personnel:	Son La	Test Date:	1/20/2016	
Supervising/Reviewing				
Engineer:				
(Where Applicable)	Michael Spataro	Required Performance:	A	
Product Standard:	EN 61000-4-8	Test Levels:	See Table Above	
Input Voltage:	230V, 50/60Hz			
		Ambient Temperature:	21.8 °C	
Ambient Field Level::	X microTesla	Relative Humidity:	12.0 %	
Test Field Level Verified:	Yes	Atmospheric Pressure:	828.9 mbars	_

Notes:

(1) Only to magnetically sensitive components.(2) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

Model LulzBot TAZ 6 Page 59 of 60

Intertek

Report Number: 102442722DEN-001 Issued: 01/21/2016

17 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	1/20/2016	102442722DEN-001	SI	NAS	Original Issue

Model LulzBot TAZ 6 Page 60 of 60